3.359 \(\int \frac{x^6}{1-x^4+x^8} \, dx\)

Optimal. Leaf size=275 \[ \frac{\log \left (x^2-\sqrt{2-\sqrt{3}} x+1\right )}{4 \sqrt{6}}-\frac{\log \left (x^2+\sqrt{2-\sqrt{3}} x+1\right )}{4 \sqrt{6}}+\frac{\log \left (x^2-\sqrt{2+\sqrt{3}} x+1\right )}{4 \sqrt{6}}-\frac{\log \left (x^2+\sqrt{2+\sqrt{3}} x+1\right )}{4 \sqrt{6}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2-\sqrt{3}}-2 x}{\sqrt{2+\sqrt{3}}}\right )}{2 \sqrt{6}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2+\sqrt{3}}-2 x}{\sqrt{2-\sqrt{3}}}\right )}{2 \sqrt{6}}+\frac{\tan ^{-1}\left (\frac{2 x+\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}\right )}{2 \sqrt{6}}+\frac{\tan ^{-1}\left (\frac{2 x+\sqrt{2+\sqrt{3}}}{\sqrt{2-\sqrt{3}}}\right )}{2 \sqrt{6}} \]

[Out]

-ArcTan[(Sqrt[2 - Sqrt[3]] - 2*x)/Sqrt[2 + Sqrt[3]]]/(2*Sqrt[6]) - ArcTan[(Sqrt[
2 + Sqrt[3]] - 2*x)/Sqrt[2 - Sqrt[3]]]/(2*Sqrt[6]) + ArcTan[(Sqrt[2 - Sqrt[3]] +
 2*x)/Sqrt[2 + Sqrt[3]]]/(2*Sqrt[6]) + ArcTan[(Sqrt[2 + Sqrt[3]] + 2*x)/Sqrt[2 -
 Sqrt[3]]]/(2*Sqrt[6]) + Log[1 - Sqrt[2 - Sqrt[3]]*x + x^2]/(4*Sqrt[6]) - Log[1
+ Sqrt[2 - Sqrt[3]]*x + x^2]/(4*Sqrt[6]) + Log[1 - Sqrt[2 + Sqrt[3]]*x + x^2]/(4
*Sqrt[6]) - Log[1 + Sqrt[2 + Sqrt[3]]*x + x^2]/(4*Sqrt[6])

_______________________________________________________________________________________

Rubi [A]  time = 0.515849, antiderivative size = 275, normalized size of antiderivative = 1., number of steps used = 19, number of rules used = 6, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.375 \[ \frac{\log \left (x^2-\sqrt{2-\sqrt{3}} x+1\right )}{4 \sqrt{6}}-\frac{\log \left (x^2+\sqrt{2-\sqrt{3}} x+1\right )}{4 \sqrt{6}}+\frac{\log \left (x^2-\sqrt{2+\sqrt{3}} x+1\right )}{4 \sqrt{6}}-\frac{\log \left (x^2+\sqrt{2+\sqrt{3}} x+1\right )}{4 \sqrt{6}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2-\sqrt{3}}-2 x}{\sqrt{2+\sqrt{3}}}\right )}{2 \sqrt{6}}-\frac{\tan ^{-1}\left (\frac{\sqrt{2+\sqrt{3}}-2 x}{\sqrt{2-\sqrt{3}}}\right )}{2 \sqrt{6}}+\frac{\tan ^{-1}\left (\frac{2 x+\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}\right )}{2 \sqrt{6}}+\frac{\tan ^{-1}\left (\frac{2 x+\sqrt{2+\sqrt{3}}}{\sqrt{2-\sqrt{3}}}\right )}{2 \sqrt{6}} \]

Antiderivative was successfully verified.

[In]  Int[x^6/(1 - x^4 + x^8),x]

[Out]

-ArcTan[(Sqrt[2 - Sqrt[3]] - 2*x)/Sqrt[2 + Sqrt[3]]]/(2*Sqrt[6]) - ArcTan[(Sqrt[
2 + Sqrt[3]] - 2*x)/Sqrt[2 - Sqrt[3]]]/(2*Sqrt[6]) + ArcTan[(Sqrt[2 - Sqrt[3]] +
 2*x)/Sqrt[2 + Sqrt[3]]]/(2*Sqrt[6]) + ArcTan[(Sqrt[2 + Sqrt[3]] + 2*x)/Sqrt[2 -
 Sqrt[3]]]/(2*Sqrt[6]) + Log[1 - Sqrt[2 - Sqrt[3]]*x + x^2]/(4*Sqrt[6]) - Log[1
+ Sqrt[2 - Sqrt[3]]*x + x^2]/(4*Sqrt[6]) + Log[1 - Sqrt[2 + Sqrt[3]]*x + x^2]/(4
*Sqrt[6]) - Log[1 + Sqrt[2 + Sqrt[3]]*x + x^2]/(4*Sqrt[6])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 73.7589, size = 508, normalized size = 1.85 \[ - \frac{\sqrt{3} \left (- \frac{\sqrt{3}}{2} + \frac{1}{2}\right ) \log{\left (x^{2} - x \sqrt{- \sqrt{3} + 2} + 1 \right )}}{12 \sqrt{- \sqrt{3} + 2}} + \frac{\sqrt{3} \left (- \frac{\sqrt{3}}{2} + \frac{1}{2}\right ) \log{\left (x^{2} + x \sqrt{- \sqrt{3} + 2} + 1 \right )}}{12 \sqrt{- \sqrt{3} + 2}} + \frac{\sqrt{3} \left (\frac{1}{2} + \frac{\sqrt{3}}{2}\right ) \log{\left (x^{2} - x \sqrt{\sqrt{3} + 2} + 1 \right )}}{12 \sqrt{\sqrt{3} + 2}} - \frac{\sqrt{3} \left (\frac{1}{2} + \frac{\sqrt{3}}{2}\right ) \log{\left (x^{2} + x \sqrt{\sqrt{3} + 2} + 1 \right )}}{12 \sqrt{\sqrt{3} + 2}} + \frac{\sqrt{3} \left (- \sqrt{\sqrt{3} + 2} + \frac{\left (1 + \sqrt{3}\right ) \sqrt{\sqrt{3} + 2}}{2}\right ) \operatorname{atan}{\left (\frac{2 x - \sqrt{\sqrt{3} + 2}}{\sqrt{- \sqrt{3} + 2}} \right )}}{6 \sqrt{- \sqrt{3} + 2} \sqrt{\sqrt{3} + 2}} + \frac{\sqrt{3} \left (- \sqrt{\sqrt{3} + 2} + \frac{\left (1 + \sqrt{3}\right ) \sqrt{\sqrt{3} + 2}}{2}\right ) \operatorname{atan}{\left (\frac{2 x + \sqrt{\sqrt{3} + 2}}{\sqrt{- \sqrt{3} + 2}} \right )}}{6 \sqrt{- \sqrt{3} + 2} \sqrt{\sqrt{3} + 2}} + \frac{\sqrt{3} \left (- \frac{\left (- \sqrt{3} + 1\right ) \sqrt{- \sqrt{3} + 2}}{2} + \sqrt{- \sqrt{3} + 2}\right ) \operatorname{atan}{\left (\frac{2 x - \sqrt{- \sqrt{3} + 2}}{\sqrt{\sqrt{3} + 2}} \right )}}{6 \sqrt{- \sqrt{3} + 2} \sqrt{\sqrt{3} + 2}} + \frac{\sqrt{3} \left (- \frac{\left (- \sqrt{3} + 1\right ) \sqrt{- \sqrt{3} + 2}}{2} + \sqrt{- \sqrt{3} + 2}\right ) \operatorname{atan}{\left (\frac{2 x + \sqrt{- \sqrt{3} + 2}}{\sqrt{\sqrt{3} + 2}} \right )}}{6 \sqrt{- \sqrt{3} + 2} \sqrt{\sqrt{3} + 2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**6/(x**8-x**4+1),x)

[Out]

-sqrt(3)*(-sqrt(3)/2 + 1/2)*log(x**2 - x*sqrt(-sqrt(3) + 2) + 1)/(12*sqrt(-sqrt(
3) + 2)) + sqrt(3)*(-sqrt(3)/2 + 1/2)*log(x**2 + x*sqrt(-sqrt(3) + 2) + 1)/(12*s
qrt(-sqrt(3) + 2)) + sqrt(3)*(1/2 + sqrt(3)/2)*log(x**2 - x*sqrt(sqrt(3) + 2) +
1)/(12*sqrt(sqrt(3) + 2)) - sqrt(3)*(1/2 + sqrt(3)/2)*log(x**2 + x*sqrt(sqrt(3)
+ 2) + 1)/(12*sqrt(sqrt(3) + 2)) + sqrt(3)*(-sqrt(sqrt(3) + 2) + (1 + sqrt(3))*s
qrt(sqrt(3) + 2)/2)*atan((2*x - sqrt(sqrt(3) + 2))/sqrt(-sqrt(3) + 2))/(6*sqrt(-
sqrt(3) + 2)*sqrt(sqrt(3) + 2)) + sqrt(3)*(-sqrt(sqrt(3) + 2) + (1 + sqrt(3))*sq
rt(sqrt(3) + 2)/2)*atan((2*x + sqrt(sqrt(3) + 2))/sqrt(-sqrt(3) + 2))/(6*sqrt(-s
qrt(3) + 2)*sqrt(sqrt(3) + 2)) + sqrt(3)*(-(-sqrt(3) + 1)*sqrt(-sqrt(3) + 2)/2 +
 sqrt(-sqrt(3) + 2))*atan((2*x - sqrt(-sqrt(3) + 2))/sqrt(sqrt(3) + 2))/(6*sqrt(
-sqrt(3) + 2)*sqrt(sqrt(3) + 2)) + sqrt(3)*(-(-sqrt(3) + 1)*sqrt(-sqrt(3) + 2)/2
 + sqrt(-sqrt(3) + 2))*atan((2*x + sqrt(-sqrt(3) + 2))/sqrt(sqrt(3) + 2))/(6*sqr
t(-sqrt(3) + 2)*sqrt(sqrt(3) + 2))

_______________________________________________________________________________________

Mathematica [C]  time = 0.017545, size = 41, normalized size = 0.15 \[ \frac{1}{4} \text{RootSum}\left [\text{$\#$1}^8-\text{$\#$1}^4+1\&,\frac{\text{$\#$1}^3 \log (x-\text{$\#$1})}{2 \text{$\#$1}^4-1}\&\right ] \]

Antiderivative was successfully verified.

[In]  Integrate[x^6/(1 - x^4 + x^8),x]

[Out]

RootSum[1 - #1^4 + #1^8 & , (Log[x - #1]*#1^3)/(-1 + 2*#1^4) & ]/4

_______________________________________________________________________________________

Maple [C]  time = 0.028, size = 32, normalized size = 0.1 \[{\frac{\sum _{{\it \_R}={\it RootOf} \left ( 9\,{{\it \_Z}}^{4}+1 \right ) }{\it \_R}\,\ln \left ( 9\,{{\it \_R}}^{3}x-3\,{{\it \_R}}^{2}+{x}^{2} \right ) }{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^6/(x^8-x^4+1),x)

[Out]

1/4*sum(_R*ln(9*_R^3*x-3*_R^2+x^2),_R=RootOf(9*_Z^4+1))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{6}}{x^{8} - x^{4} + 1}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^6/(x^8 - x^4 + 1),x, algorithm="maxima")

[Out]

integrate(x^6/(x^8 - x^4 + 1), x)

_______________________________________________________________________________________

Fricas [A]  time = 0.266756, size = 271, normalized size = 0.99 \[ -\frac{1}{6} \, \sqrt{3} \sqrt{2} \arctan \left (\frac{\sqrt{3} \sqrt{2} + 3 \, x}{\sqrt{3} \sqrt{2} x^{2} + \sqrt{3} \sqrt{2} \sqrt{x^{4} + \sqrt{3} \sqrt{2}{\left (x^{3} + x\right )} + 3 \, x^{2} + 1} + 3 \, x}\right ) + \frac{1}{6} \, \sqrt{3} \sqrt{2} \arctan \left (\frac{\sqrt{3} \sqrt{2} - 3 \, x}{\sqrt{3} \sqrt{2} x^{2} + \sqrt{3} \sqrt{2} \sqrt{x^{4} - \sqrt{3} \sqrt{2}{\left (x^{3} + x\right )} + 3 \, x^{2} + 1} - 3 \, x}\right ) - \frac{1}{24} \, \sqrt{3} \sqrt{2} \log \left (x^{4} + \sqrt{3} \sqrt{2}{\left (x^{3} + x\right )} + 3 \, x^{2} + 1\right ) + \frac{1}{24} \, \sqrt{3} \sqrt{2} \log \left (x^{4} - \sqrt{3} \sqrt{2}{\left (x^{3} + x\right )} + 3 \, x^{2} + 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^6/(x^8 - x^4 + 1),x, algorithm="fricas")

[Out]

-1/6*sqrt(3)*sqrt(2)*arctan((sqrt(3)*sqrt(2) + 3*x)/(sqrt(3)*sqrt(2)*x^2 + sqrt(
3)*sqrt(2)*sqrt(x^4 + sqrt(3)*sqrt(2)*(x^3 + x) + 3*x^2 + 1) + 3*x)) + 1/6*sqrt(
3)*sqrt(2)*arctan((sqrt(3)*sqrt(2) - 3*x)/(sqrt(3)*sqrt(2)*x^2 + sqrt(3)*sqrt(2)
*sqrt(x^4 - sqrt(3)*sqrt(2)*(x^3 + x) + 3*x^2 + 1) - 3*x)) - 1/24*sqrt(3)*sqrt(2
)*log(x^4 + sqrt(3)*sqrt(2)*(x^3 + x) + 3*x^2 + 1) + 1/24*sqrt(3)*sqrt(2)*log(x^
4 - sqrt(3)*sqrt(2)*(x^3 + x) + 3*x^2 + 1)

_______________________________________________________________________________________

Sympy [A]  time = 0.633401, size = 165, normalized size = 0.6 \[ \frac{\sqrt{6} \left (2 \operatorname{atan}{\left (\frac{\sqrt{6} x}{3} - \frac{1}{3} \right )} + 2 \operatorname{atan}{\left (\sqrt{6} x^{3} - 4 x^{2} + 2 \sqrt{6} x - 3 \right )}\right )}{24} + \frac{\sqrt{6} \left (2 \operatorname{atan}{\left (\frac{\sqrt{6} x}{3} + \frac{1}{3} \right )} + 2 \operatorname{atan}{\left (\sqrt{6} x^{3} + 4 x^{2} + 2 \sqrt{6} x + 3 \right )}\right )}{24} + \frac{\sqrt{6} \log{\left (x^{4} - \sqrt{6} x^{3} + 3 x^{2} - \sqrt{6} x + 1 \right )}}{24} - \frac{\sqrt{6} \log{\left (x^{4} + \sqrt{6} x^{3} + 3 x^{2} + \sqrt{6} x + 1 \right )}}{24} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**6/(x**8-x**4+1),x)

[Out]

sqrt(6)*(2*atan(sqrt(6)*x/3 - 1/3) + 2*atan(sqrt(6)*x**3 - 4*x**2 + 2*sqrt(6)*x
- 3))/24 + sqrt(6)*(2*atan(sqrt(6)*x/3 + 1/3) + 2*atan(sqrt(6)*x**3 + 4*x**2 + 2
*sqrt(6)*x + 3))/24 + sqrt(6)*log(x**4 - sqrt(6)*x**3 + 3*x**2 - sqrt(6)*x + 1)/
24 - sqrt(6)*log(x**4 + sqrt(6)*x**3 + 3*x**2 + sqrt(6)*x + 1)/24

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.302906, size = 277, normalized size = 1.01 \[ \frac{1}{12} \, \sqrt{6} \arctan \left (\frac{4 \, x + \sqrt{6} - \sqrt{2}}{\sqrt{6} + \sqrt{2}}\right ) + \frac{1}{12} \, \sqrt{6} \arctan \left (\frac{4 \, x - \sqrt{6} + \sqrt{2}}{\sqrt{6} + \sqrt{2}}\right ) + \frac{1}{12} \, \sqrt{6} \arctan \left (\frac{4 \, x + \sqrt{6} + \sqrt{2}}{\sqrt{6} - \sqrt{2}}\right ) + \frac{1}{12} \, \sqrt{6} \arctan \left (\frac{4 \, x - \sqrt{6} - \sqrt{2}}{\sqrt{6} - \sqrt{2}}\right ) - \frac{1}{24} \, \sqrt{6}{\rm ln}\left (x^{2} + \frac{1}{2} \, x{\left (\sqrt{6} + \sqrt{2}\right )} + 1\right ) + \frac{1}{24} \, \sqrt{6}{\rm ln}\left (x^{2} - \frac{1}{2} \, x{\left (\sqrt{6} + \sqrt{2}\right )} + 1\right ) - \frac{1}{24} \, \sqrt{6}{\rm ln}\left (x^{2} + \frac{1}{2} \, x{\left (\sqrt{6} - \sqrt{2}\right )} + 1\right ) + \frac{1}{24} \, \sqrt{6}{\rm ln}\left (x^{2} - \frac{1}{2} \, x{\left (\sqrt{6} - \sqrt{2}\right )} + 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^6/(x^8 - x^4 + 1),x, algorithm="giac")

[Out]

1/12*sqrt(6)*arctan((4*x + sqrt(6) - sqrt(2))/(sqrt(6) + sqrt(2))) + 1/12*sqrt(6
)*arctan((4*x - sqrt(6) + sqrt(2))/(sqrt(6) + sqrt(2))) + 1/12*sqrt(6)*arctan((4
*x + sqrt(6) + sqrt(2))/(sqrt(6) - sqrt(2))) + 1/12*sqrt(6)*arctan((4*x - sqrt(6
) - sqrt(2))/(sqrt(6) - sqrt(2))) - 1/24*sqrt(6)*ln(x^2 + 1/2*x*(sqrt(6) + sqrt(
2)) + 1) + 1/24*sqrt(6)*ln(x^2 - 1/2*x*(sqrt(6) + sqrt(2)) + 1) - 1/24*sqrt(6)*l
n(x^2 + 1/2*x*(sqrt(6) - sqrt(2)) + 1) + 1/24*sqrt(6)*ln(x^2 - 1/2*x*(sqrt(6) -
sqrt(2)) + 1)